Glucose recovery from aqueous solutions by adsorption in metal–organic framework MIL-101: a molecular simulation study

نویسندگان

  • Krishna M. Gupta
  • Kang Zhang
  • Jianwen Jiang
چکیده

A molecular simulation study is reported on glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101. The F atom of MIL-101 is identified to be the most favorable adsorption site. Among three MIL-101-X (X = H, NH2 or CH3), the parent MIL-101 exhibits the highest adsorption capacity and recovery efficacy. Upon functionalization by -NH2 or -CH3 group, the steric hindrance in MIL-101 increases; consequently, the interactions between glucose and framework become less attractive, thus reducing the capacity and mobility of glucose. The presence of ionic liquid, 1-ethyl-3-methyl-imidazolium acetate, as an impurity reduces the strength of hydrogen-bonding between glucose and MIL-101, and leads to lower capacity and mobility. Upon adding anti-solvent (ethanol or acetone), a similar adverse effect is observed. The simulation study provides useful structural and dynamic properties of glucose in MIL-101, and it suggests that MIL-101 might be a potential candidate for glucose recovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities

Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as -OH and -NH2 were very effective for naproxen adsorption, despit...

متن کامل

The Preparation of Porous Sol-Gel Silica with Metal Organic Framework MIL-101(Cr) by Microwave-Assisted Hydrothermal Method for Adsorption Chillers

Abstract: Metal organic framework (MOF) of MIL-101(Cr)-Silica (SiO₂) composites with highly mesoporous and uniform dispersions were synthesized by a microwave-assisted hydrothermal method followed by the sol-gel technique. Water vapor adsorption experiments were conducted on the MIL-101(Cr)-SiO₂ composites for industrial adsorption chiller applications. The effects of MIL-101(Cr)-SiO₂ mixing ra...

متن کامل

Surface modification of hollow magnetic Fe3O4@NH2-MIL-101(Fe) derived from metal-organic frameworks for enhanced selective removal of phosphates from aqueous solution

Hollow magnetic Fe3O4@NH2-MIL-101(Fe) derived from metal-organic frameworks are fabricated through a general facile strategy. The synthetic parameters are regulated to control the shape of the as-prepared samples. The concentration of phosphates decreased sharply from the initial 0.60 to 0.045 mg.L(-1) with the exposure time in 50 minutes. The correlation between the most significant parameters...

متن کامل

Ionic liquid@MIL-101 prepared via the ship-in-bottle technique: remarkable adsorbents for the removal of benzothiophene from liquid fuel.

Ionic liquids (ILs) were synthesized inside a porous metal-organic framework (MIL-101) via a ship-in-bottle (SIB) technique. Unlike previously reported IL-incorporated MIL-101s, IL@MIL-101 prepared by the SIB approach was very stable over several cycles for the liquid phase adsorption of benzothiophene from liquid fuel.

متن کامل

Au3+/Au0 Supported on Chromium(III) Terephthalate Metal Organic Framework (MIL-101) as an Efficient Heterogeneous Catalystfor Three-Component Coupling Synthesis of Propargylamines

Post-synthesis modification is a useful method for the functionalization of metal-organic frameworks (MOFs). A novel catalyst Au@MIL-101-ED-SA (ED = ethylenediamine, SA = salicylaldehyde), containing coexisting Au3+ ions and Au⁰ nanoparticles, was prepared successfully by post-synthesis modification with ethylenediamine, salicylaldehyde and gold. Gold nanoparticles supported on MIL-101 (Au@MIL-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015